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Self-consistent mode-coupling approach to the nonlocal Kardar-Parisi-Zhang equation
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The dynamic scaling of the nonlocal Kardar-Parisi-Zhang equation in the strong-coupling regime is inves-
tigated by a self-consistent mode-coupling approximation. The values of the dynamic exponent depending on
nonlocal parametep are calculated numerically for the substrate dimensierl, d=2, andd=3, respec-
tively.
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The Kardar-Parisi-Zhan(KPZ) equation 1] is one of the  point describing a smooth and a rough interface, respectively.
most prominent models describing nontrivial nonequilibriumFor substrate dimensioms>2 there exists a nonequilibrium
dynamics and has attracted much attention in recent yeaghase transition from a weak-coupling phase for small effec-
[2]. In addition to the coarse-grained description of a widetive coupling constantgy=\2D/v® to a strong-coupling
variety of growth processes, such as the Eden model, growgphase. In the weak-coupling phase, the nonlinear term is ir-
by ballistic deposition, and the growth of an interface inrelevant and the behavior of the KPZ equation is governed
random mediunj2], it is also related to many other impor- by the GaussianN=0) fixed point, the KPZ in this phase is
tant physical problems such as randomly stirred flJi8ls  equivalent to the linear Edwards-Wilkinson equation, for
(Burgers equation dissipative transport in the driven- which the scaling exponents are known exactly to ype
diffusion equation4,5], the directed polymer problem in a =(2—d)/2 andz=2. While in the strong-coupling phase,
random potentigl6], and the behavior of flux lines in super- the nonlinear term is relevant and the scaling relationz
conductors[7]. So any advance in understanding the KPZ=2 (for all d) follows from the the invariance of Eql) to
equation will possibly have wide significance both in thean infinitesimal titling of the surfacdh—h+v-x, x—Xx
fields of nonequilibrium dynamics and in disordered sys-—\vt [10]. It should also be mentioned that the scaling re-
tems. lation y+z=2 holds for finite renormalization-group fixed

The KPZ equation for a growing interface is points and it is not clear at all that this scaling relation should

also apply to the strong-coupling regime beyond the rough-
(1) ening transition fod=2. Accordingly, there is only one in-

dependent exponent to be determined in the strong-coupling

regime. For the special case=1, the existence of a
It describes the height fluctuatiohgx,t) of a stochastically fluctuation-dissipation theorem leads to the exact regult
grown d-dimensional interface with a growth raigVh) =1/2 andz=3/2. However, the scaling exponents in general
=\(Vh)?2 depending nonlinearly on the local orientation dimensiond are not known exactly up to now and the be-
of the interface. TheV2h) term mimics a surface tension, havior of the KPZ is controversial. In addition, it has been
and acts to smooth the interface, while the uncorrelatedhown that if the noise in Eq1) is Gaussian spatially long-
Langevin noisezn(x,t) tends to roughen the interface and range correlated noise and characterized by its second mo-
entails the stochastic nature of a growth process. The noisaent R(x—x')=|x—x'|2?~9, the lower critical dimension

dh(x,t)
at

=vv2h+5(Vh)2+ (x1)
2 AL

has zero mean and is Gaussian, such that for the roughening transition is shifted upwards dg=2
+20 [10,11]. In order to gain a better understanding of the
(n(x,t) (X' ,t"))=2D &% x—x")8(t—t"), (2)  KPZ equation and possibly reveal some of its hidden secrets,

Janssen, Tber, and Frey11] recently investigated the KPZ
whered is the substrate dimension abdspecifies the noise equation ind spatial dimensions with Gaussian spatially
amplitude[1]. long-range correlated noise by means of dynamic field

The steady state interface profile is usually described iRheory and the renormalization group. They fully discussed
terms of the roughnessy(L,t)=+\(h*(x,t))—(h(x,t))?>,  the scaling regimes and critical dimensions in the KPZ prob-
which for a system of sizé behaves likeLXf(t/L?) [8], lem and argued that there is an intriguing possibility that the
where the scaling functiof(u)— const asu—o and f(u) rough phases above and below the lower critical dimension
—u¥Z asu—0, so thatw~t¥'% for t<L? andw~LX fort  d.=2+ 20 are genuinely different.
>L? The scaling exponentg andz are the roughness and  The KPZ equation and most of its modifications are gen-
the dynamic exponent, respectively. The phenomenology oérally related only to short-ranger local) nature of interac-
the KPZ equation is now well knowf9]: Below the lower tion in the nonlinear term that describes the lateral growth
critical dimensiond.=2, there appear two renormalization- [1]. In many growth problems, however, the long-range in-
group(RG) fixed points, namely, an infrared-unstable Gauss+eractions, e.g., the long-ranged hydrodynamic interactions,
ian fixed point and an infrared-stable strong-coupling fixedare necessary12,13. In order to incorporate these long-
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range interactions into the kinetic roughening of surfacethe KPZ equation in the strong-coupling regime. They deter-
Mukherji and Bhattacharjelel 4] proposed the nonlocal KPZ mined the upper critical dimension, dynamic exponents, and
equation that is a phenomenological equation with a nonlinscaling functions by constructing an ansatz consistent with
ear term of long-range nature capable of correlating each sité@e asymptotic forms of the correlation and response func-
of the growing surface with all other sites. By dynamic tions[28], and derived, by using a saddle point analysis of
renormalization-groufDRG) analysis, they show that the the mode-coupling equations, exact results for the correlation
nonlocal nonlinearity introduced is sufficient to yield new function in the long-time limit—a limit that is hard to study
fixed points with continuously varying exponents depending!Sing simulation$29]. So far, all the analytical works in the
on the long-range feature, and several distinct phase trangiode-coupling theory have been started by making an ansatz
tions that were not found in the local KPZ theory. After that, O the form of the scaling functions. _
the effects of long-range interaction on the conserved Kpz In the present work, we apply a self-consistent mode-
equation and the noisy Kuramoto-Sivashinsky equation wer§0Upling approach to the nonlocal KPZ equatjd#] to in-
studied by DRG technique, respectivéhs,16. vestigate its dynamic scalmg in the strong-co.upllng phase. In
In the analysis of the dynamic scaling behavior of nonlin-0ur discussion, the scaling function assumptions proposed in
ear Langevin-type equations, the DRG theory is the mosRef.[28] are used. The corresponding values of the dynamic
widely used analytical methoffl,3,10,14—-1% The DRG  €xponent that depend on nonlocal paramgtare calculated
theory, however, has had only limited success. This is bedumerically for the substrate dimensidr=1, d=2, andd
cause in the strong-coupling regime, the exponents are cor= 3. respectively. _ )
trolled by some nontrivial strong-coupling fixed points that  The nonlocal KPZ equation proposed by Mukherji and
are inaccessible through a perturbative DRG ana[yisis In ~ Bhattacharje¢14] is
the analytical theory, a major theoretical difficulty that in the

strong-coupling regime the perturbative series\i@bout\ ah(x,t) ) 1 , ,

=0 cannot be summed self-consistently in terms of just re-  —5r — — ¥V (XD +7(x,)+ Ef dx’ $(x")Vh(x
sponse and correlation functions because of vertex correction

graphs that renormalize the nonlinearity. The nonperturbative +x',t)- Vh(x—x",t), 3

mode-coupling approximation essentially consists in a re-

summation of the perturbative theory in which all propagatorynere the kernel functio(x) has a short-rangéSR) part
renormalizations are properly taken into account, while the_) 's5(x) and a long-rangéLR) part~\ x* 9. It was indi-
vertex corrections are neglected complet¢8;18]. This  cated, by simple scaling analysis, that boath and A are
seems to be a very strange and uncontrolled procedure. Neysjeyant ford<2 at the Gaussian fixed point and the critical
ertheless, t_he mode-goupllng theory has be_en remarkablymensions are given bg.=2+2p (for p>0) andd.=2
successful in applications to the KPZ equation as well a%for p<0) for any nonzera\,. Whenp>0, the local KPZ
many other areas of the condensed matter theory, such §§eqry is “unstable” under renormalization and a non-KPZ
structural glass transitiorj49], critical dynamics of magnets behavior is expected. For<2d<2+2p, only \, is relevant

[20], binary mixtures, and othef&1]. I.n all thosel fields, it ot the Gaussian fixed poirfii4,15. The X, vs A, phase
has been found that the mode-coupling theory is capable ‘giagram for the nonlocal KPZ equation is shown clearly in

describing experimen_ts in a q_uantitative manner. In RefRef. [14]. In the SR limit where the SR part of E€) domi-
[22], the mode-coupling equations for the KPZ equation .ioc the LR part No#0 and [\, /\o|<1), Eq. (3) can

were solved numerically to obtain the entire scaling func-go,,qh1y 9o over to the local KPZ equatiét in the case of
tions in 1+1 dimensions, and striking agreement with that)\ —0. Our discussion in this paper will focus on the LR
obtained by direct numerical simulations was fours]. Iir?]it where the LR part of the nonlinear term in E¢B)
Motivated by these facts, Fret al. gave a systematic analy- ominates the SR part\p#0 and|\o/\,|<1), namely

sis of thg mode—couplipg approgch using the field theoreticainly consider the LR axial fixed poin{i4ﬁ). It sh,ould be é
formulation of Langevin dynam|c524]. Dohgrtyet al.[18] noticeable question whether the following results do address
have shown that the mode-coupling equations become exafs yeneralization of the single scaling regime of the one-
in the largeN limit of a generalizedN-component KPZ equa- dimensional KPZ equation, or there is a roughening transi-

tion, which allows, in principle, a systematic approach to thetion, and the listed values are supposed to be those for the
theory beyond mode-coupling. In fact, there have been many, o strong-coupling rough phase beyond a nonequilibrium

analytical and numerical works involving the mode-coupling . | ; o
S ghening transition. Janssenal.[11] have argued that the
approach to the KPZ equation: Bouchaud and Casi mode-coupling approximation generically introduces spa-

gave an approximate analytical solution by assuming simplg, )y |ong-range correlations and therefore only addresses
exponential relaxation for each mode; Dohestyal. [18] the former

used, instead, an ansatz based on the form of the scaling :

functions ind=1; Tu [26] solved numerically the mode- In the Fourier space, Eq3) becomes
coupling equations by direct integration to determine the up-
per critical dimension of the KPZ; Moot al.[27] obtained 1 dQ  diq
an explicit solution of the mode-coupling equations tbr h(k’“’):GO(k"")”(k"")_EGO(k"")f (2m) (20
>d.=4 with z=2. In their recent works, Colaiori and

Moore[28,29 studied the mode-coupling approximation for —-24q))g: (k—q)h(q,Q)h(k—g,0—Q), (4)

9(|k
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with Go(k,») =1/(vk?—iw) representing the bare responsewherex= w/k? andl,(x) andl,(x) are given by
function. The correlationC(k,w) and response functions

G(k,w) are defined by Il(x):PfTrdesind—zafwdqqzz—3+2p(cos’20
0 0

C(k,w)=(h(k,0)h* (k,w)), 5
and —qcosH)r;zPr*Zf dyg(x_Z Y n(y),
r
- - ah(k,w) (15
Gk,w)=56"4k+k s o+ )| ————), (6
ank',o")

P -
IZ(X):EJ desin"*zaj’ dqof? 3t2r(cose

where (*) denotes an average over noigék,w). In the 0 0

spirit of mode-coupling approximatidri.8,22,24, we derive

. . . X— z
the foIIowm.g self-consistent coupled equations @k, ) —q)zr;Z”r’(ZX*d*Z)f dyn ay n(y),
andC(k,w): r?
dQ  d 18
G—l(k,w):egl(k,w)+f— qdﬁz(|k
(2m) (27) with P=\2Sy_;/(2m)%"", Sy is the surface area of the

d-dimensional unit spherer?=g?—2qcosf+1, and r?

~2dDla-(k—)]la-k]G(k—q.w =4q%—4qcosé+1. The dynamic exponert=z(d,p) can

-Q0)C(q,Q), (7) be obtained by requiring consistency of E(js3) and(14) on
matching both sides at an arbitrarily chosen valuex.ofn
1 dQ  dig doing this, it is usual to make assumptions about the form of
C(k,w)=Cqo(k,w)+ §|G(k,w)|2f o S 92(Jk the scaling functiong(x) andn(x). Because of the nonlo-
(27) (2m) cality of Egs.(13) and(14), the matching condition depends

_ e V120 ey on the forms of the functiong(x) andn(x) for all x, so the

20Dla: (k=@ J*Ck=q.0=2)C(q.0), (®) assumptions need to be reliable forxa]28]. Before Colaiori
whereCy(k,w)=2D|G(k,®)|? is the bare correlation func- and Moore's work[28], some assumptions had been pro-
tion. In the SR limit, 3(k)=\o, Egs.(7) and (8) can be posed[18,25. However, they all do not have the right large

reduced to the mode-coupling equations for the original KP2 asymptotic form[26]. In the case ok—c, the integrals

equation[18,22—29. In the strong-coupling limit, we look 11(x) andl,(x) are controlled by regions whetg-x**, so
for the scaling solutions by simple power counting, we can obtain the following large
x asymptotic behaviors fag(x) andn(x):
G(k,w)=k g(w/k?), C(k,w)=k 2n(w/k?, (9
nO)~x"17P% gr(x)=Reg(x)]~x" "%,

whereg(x) is a complex function and(x) is a real function.
By substituting these scaling forms into E¢#) and(8) and
keeping only the leading terms in the limit,k—0 while
keepingw/k? finite, we find that the exponents andz have
to satisfy the following relation:

gi(x)=Im[g(x)]~x"1, (17)

with B=4+d—2z—2p.
It is convenient to discuss in Fourier space, in which Egs.

A+z=4+d—2p. (10) (13) and(14) can be written a$28]
As a result of the Galilean invariance of E®), there is the Or R
scaling exponent relation foy andz[14,15, E(D):M(p), (18
x+z=2-p. (12) .
n R
Therefore, from Eqs(10) and(11), we obtain ﬁ(p)zlz(p), (19
g
A=2x+d+z, (12

wherefl(p) is the Fourier transform of the real partlgfx)

ndi,(p) is the Fourier transform of,(x). They are ex-
aE’ressed by

which, in fact, imply that the correlation function for the
nonlocal KPZ equation has also the standard dynamic sc
ing form. In the LR limit, the scaling functiong(x) and
n(x) satisfy the following equations:

Ti(p)=27P | dosint 20| dag* 3+ 2(coge
9~ 1= —ix+11(%). 13 1(p)=2m jo si fo aq (co

n(x)=|g(x)|2l5(x), (14) —qcoso)r, Pgr(prin(pgd), (20)
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T2(p):7T|:’f7rd¢9sind‘2élf dqqf?3*27(cos
0 0

— )%, 2r @ In(prin(pop). (21)

Colaiori and Moore[28] proposed the scaling function

assumptions fon andg,
9(p)=2Ca(p)exp—[Dp|?), (22

n(p)=Aexp —|Bp|”?), (23

with D=1 andC=1/2, A andB are parameters depending

ond, z, and\,,. It can be found that ix space, for large,
these assumptions giya8]

g(x)=constxx 1" 2Z+ix "1, (24)

n(x)=constxx 1 #2, (25)

So the assumptions in Eq$22) and (23) have the right

asymptotic behaviors that are consistent with ELy). To
match the largex behaviors of Eqs(18) and (19), we can

equivalently match them in the limp—0, which actually
means matching the most divergent terms on both sides o

these two equations. In the largdimit, |g(x)| ~?=x?, so in
the smallp limit the left-hand sides in both Eq$18) and

(19) are dominated by the termsn/dp? and d2gg/dp?
[28]. Accordingly, we have

(2—2)/2%=1im |p|?~ %4 1(p),
p—>0

(26)

ABPIZB(B—2)/22= lim |p|2 P 5(p).
p—0

(27)

By performing the integrals and taking the linpt—0 in

Egs. (26) and (27), we can obtain the following coupled

equations:
PAS d(2-z) 2% -
B .2 BIB.zp) 28
PA —z 2(22—B)/E+2p
S_BB-2) 29

B2 nz? (22—,8) ’
r /
B B

where S;= [7d# sin' 26, I'(u) is the Euler's gamma func-

tion, and 1(B,z,p)=/gds(1—p—2s?)s?* 3 exp(-BF*f

—59). In the simplest scenario, the parame®ecan be taken
to be[2(2—2)] ! (see Ref[28] for detaild. So the values

of the dynamic exponemtdepending on the dimensiahand

nonlocal parametep can be calculated by solving numeri-
cally Egs.(28) and(29). We have calculated the values of

as a function of the parametgrin the case of dimensiod
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1. The values of the dynamic exponeras the function of

nonlocal parametep. (a), (b), and (c) are ford=1, 2, and 3,
=1, 2, and 3. The calculated results are shown in Fig. 1. Forespectively, in which the solid lines express the DRG results and

the sake of comparison, the results obtained by the DR@e —A—A— lines express the mode-couplifigC) results.
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method in Ref.[14] are also shown in Fig. 1, where the critical dimension of the roughening transitigstable fixed

dynamic exponent is expressed by point) and (b) the critical values at the transitiofunstable
fixed poind. The divergent values af in the DRG calcula-

7=2+ (d=2-2p)(d—2-3p) . (30) tion are thought to be an artifact of the one-loop approxima-
d(27?+3)—6—9p tion [14]. The behavior ofz as a function ofp is poorly

) o understood, and it is not clear at all which part of the plotted
It can be seen that in the situationa# 1, although both the  ¢yrves should be believed or considered artifacts of the
DRG theory and the mode-coupling approximation give theysde.coupling approximation. As a matter of fact, it is ac-

exactk\)/aluez=3/hz forpT(_O,dthefre exists isignificﬁm differ- ally not obvious at all which scaling behavior is addressed
enlc?. et\;\;]een the t;\.'o Inds o appr(;af Oej' Inht_l e_Dﬁ]R Cal:')y the mode-coupling approximation. As mentioned above,
culation, there IS a divergence aroun A, whilein e ginceq priori no information is available about the size of

mode-coupling approach, there seems to be no d|vergencfﬁe missing contributions, the mode-coupling theory consti-

but only an inflexion aroung=0. In the case ofl=2 and L . .
. T tutes an uncontrolled approximation which, we think, actu-
3, the mode-coupling approximation in the present work

gives the valueg=1.62 (d=2) andz=1.78 @=3) for p ally prevents us from giving more definite discussions on our

=0, which are identical to the results of Colaiori and MoorereSUIt.S' Thus, f_urth_er theoretlcal analyse_s of the_ mode-
[28] as we expected. In addition, the resultiin 2 is in good coupling approximation itself and the scaling function as-

agreement with the values obtained from numerical simula?'umptlons of Colaiori and Moorg2g] will be very helpful

. : . . . and valuable.

tion and with the direct numerical solution of the mode- In summary, we have applied a self-consistent mode-

?J’#g:g}? aegsuuar::o?igi 'r;h;dsevl/)e Cé‘glggpie;ﬁ(}hagg%]sgfgmg coupling approach to the nonlocal KPZ equation to study its
p y & S aling behavior in the strong-coupling regime. The values

reasonable and the mode-coupling approximation employe

here should give satisfactory results in the strong-couplin f the dynamic exponert, as a function of the nonlocal

regime. In our mode-coupling approximation, the anomaloui)aramEterf’ are calculated numerlcally in the sub_s;trate di-
_ mensiond=1, 2, and 3. In our calculation, the scaling func-
values ofz occur atp~0.3 for d=2 and p~0.55 for d

tion assumptions of Colaiori and Moof28], which have the

=3. One should see the analog of the lower critical dimen-ri ht asymptotic behaviors, are used. Our derivation shows
sion in these plots, namely, the critical=—1+d/2; al- 9 ymp ' '

thouah the sinqularities ocour at a laraer val fihe that the correlation and response function for the nonlocal

ug ingutant u ger vaugolhe p KPZ equation also have the standard scaling forms except
seems to roughly correspond to the minima for the expone% :

. ; r different exponents.

z. It is not clear that there should not be a real divergence at
some value op, corresponding to the true divergence of the We would like to thank Dr. F. Colaiori for helpful discus-
fixed point in the standard KPZ problem in two dimensions.sions. This work was supported by grants from the Hong
Equation(30) addresses, on either side of the formal diver-Kong Research Grants Coun¢RGC) and the Hong Kong

gence, respectivel{a) the single scaling regime below the Baptist University Faculty Research GrafRG).
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