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Self-consistent mode-coupling approach to the nonlocal Kardar-Parisi-Zhang equation
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The dynamic scaling of the nonlocal Kardar-Parisi-Zhang equation in the strong-coupling regime is inves-
tigated by a self-consistent mode-coupling approximation. The values of the dynamic exponent depending on
nonlocal parameterr are calculated numerically for the substrate dimensiond51, d52, andd53, respec-
tively.
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The Kardar-Parisi-Zhang~KPZ! equation@1# is one of the
most prominent models describing nontrivial nonequilibriu
dynamics and has attracted much attention in recent y
@2#. In addition to the coarse-grained description of a w
variety of growth processes, such as the Eden model, gro
by ballistic deposition, and the growth of an interface
random medium@2#, it is also related to many other impo
tant physical problems such as randomly stirred fluids@3#
~Burgers equation!, dissipative transport in the driven
diffusion equation@4,5#, the directed polymer problem in
random potential@6#, and the behavior of flux lines in supe
conductors@7#. So any advance in understanding the KP
equation will possibly have wide significance both in t
fields of nonequilibrium dynamics and in disordered s
tems.

The KPZ equation for a growing interface is

]h~x,t !

]t
5n“2h1

l

2
~“h!21h~x,t !. ~1!

It describes the height fluctuationsh(x,t) of a stochastically
grown d-dimensional interface with a growth ratev(“h)
5l(“h)2/2 depending nonlinearly on the local orientatio
of the interface. The (n“2h) term mimics a surface tension
and acts to smooth the interface, while the uncorrela
Langevin noiseh(x,t) tends to roughen the interface an
entails the stochastic nature of a growth process. The n
has zero mean and is Gaussian, such that

^h~x,t !h~x8,t8!&52Ddd~x2x8!d~ t2t8!, ~2!

whered is the substrate dimension andD specifies the noise
amplitude@1#.

The steady state interface profile is usually described
terms of the roughness,w(L,t)5A^h2(x,t)&2^h(x,t)&2,
which for a system of sizeL behaves likeLx f (t/Lz) @8#,
where the scaling functionf (u)→const asu→` and f (u)
→ux/z asu→0, so thatw;tx/z for t!Lz andw;Lx for t
@Lz. The scaling exponentsx andz are the roughness an
the dynamic exponent, respectively. The phenomenolog
the KPZ equation is now well known@9#: Below the lower
critical dimensiondc52, there appear two renormalization
group~RG! fixed points, namely, an infrared-unstable Gau
ian fixed point and an infrared-stable strong-coupling fix
1063-651X/2002/66~2!/026105~6!/$20.00 66 0261
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point describing a smooth and a rough interface, respectiv
For substrate dimensionsd.2 there exists a nonequilibrium
phase transition from a weak-coupling phase for small eff
tive coupling constantsg5l2D/n3 to a strong-coupling
phase. In the weak-coupling phase, the nonlinear term is
relevant and the behavior of the KPZ equation is govern
by the Gaussian (l50) fixed point, the KPZ in this phase i
equivalent to the linear Edwards-Wilkinson equation, f
which the scaling exponents are known exactly to bex
5(22d)/2 and z52. While in the strong-coupling phase
the nonlinear term is relevant and the scaling relationx1z
52 ~for all d) follows from the the invariance of Eq.~1! to
an infinitesimal titling of the surfaceh→h1v•x, x→x
2lvt @10#. It should also be mentioned that the scaling
lation x1z52 holds for finite renormalization-group fixe
points and it is not clear at all that this scaling relation sho
also apply to the strong-coupling regime beyond the rou
ening transition ford>2. Accordingly, there is only one in
dependent exponent to be determined in the strong-coup
regime. For the special cased51, the existence of a
fluctuation-dissipation theorem leads to the exact resulx
51/2 andz53/2. However, the scaling exponents in gene
dimensiond are not known exactly up to now and the b
havior of the KPZ is controversial. In addition, it has be
shown that if the noise in Eq.~1! is Gaussian spatially long
range correlated noise and characterized by its second
ment R(x2x8)}ux2x8u2s2d, the lower critical dimension
for the roughening transition is shifted upwards todc52
12s @10,11#. In order to gain a better understanding of t
KPZ equation and possibly reveal some of its hidden secr
Janssen, Ta¨uber, and Frey@11# recently investigated the KPZ
equation in d spatial dimensions with Gaussian spatia
long-range correlated noise by means of dynamic fi
theory and the renormalization group. They fully discuss
the scaling regimes and critical dimensions in the KPZ pr
lem and argued that there is an intriguing possibility that
rough phases above and below the lower critical dimens
dc5212s are genuinely different.

The KPZ equation and most of its modifications are ge
erally related only to short-range~or local! nature of interac-
tion in the nonlinear term that describes the lateral grow
@1#. In many growth problems, however, the long-range
teractions, e.g., the long-ranged hydrodynamic interactio
are necessary@12,13#. In order to incorporate these long
©2002 The American Physical Society05-1
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BAMBI HU AND GANG TANG PHYSICAL REVIEW E 66, 026105 ~2002!
range interactions into the kinetic roughening of surfa
Mukherji and Bhattacharjee@14# proposed the nonlocal KPZ
equation that is a phenomenological equation with a non
ear term of long-range nature capable of correlating each
of the growing surface with all other sites. By dynam
renormalization-group~DRG! analysis, they show that th
nonlocal nonlinearity introduced is sufficient to yield ne
fixed points with continuously varying exponents depend
on the long-range feature, and several distinct phase tra
tions that were not found in the local KPZ theory. After th
the effects of long-range interaction on the conserved K
equation and the noisy Kuramoto-Sivashinsky equation w
studied by DRG technique, respectively@15,16#.

In the analysis of the dynamic scaling behavior of nonl
ear Langevin-type equations, the DRG theory is the m
widely used analytical method@1,3,10,14–16#. The DRG
theory, however, has had only limited success. This is
cause in the strong-coupling regime, the exponents are
trolled by some nontrivial strong-coupling fixed points th
are inaccessible through a perturbative DRG analysis@17#. In
the analytical theory, a major theoretical difficulty that in t
strong-coupling regime the perturbative series inl aboutl
50 cannot be summed self-consistently in terms of just
sponse and correlation functions because of vertex correc
graphs that renormalize the nonlinearity. The nonperturba
mode-coupling approximation essentially consists in a
summation of the perturbative theory in which all propaga
renormalizations are properly taken into account, while
vertex corrections are neglected completely@3,18#. This
seems to be a very strange and uncontrolled procedure.
ertheless, the mode-coupling theory has been remark
successful in applications to the KPZ equation as well
many other areas of the condensed matter theory, suc
structural glass transitions@19#, critical dynamics of magnets
@20#, binary mixtures, and others@21#. In all those fields, it
has been found that the mode-coupling theory is capabl
describing experiments in a quantitative manner. In R
@22#, the mode-coupling equations for the KPZ equati
were solved numerically to obtain the entire scaling fun
tions in 111 dimensions, and striking agreement with th
obtained by direct numerical simulations was found@23#.
Motivated by these facts, Freyet al.gave a systematic analy
sis of the mode-coupling approach using the field theoret
formulation of Langevin dynamics@24#. Dohertyet al. @18#
have shown that the mode-coupling equations become e
in the largeN limit of a generalizedN-component KPZ equa
tion, which allows, in principle, a systematic approach to
theory beyond mode-coupling. In fact, there have been m
analytical and numerical works involving the mode-coupli
approach to the KPZ equation: Bouchaud and Cates@25#
gave an approximate analytical solution by assuming sim
exponential relaxation for each mode; Dohertyet al. @18#
used, instead, an ansatz based on the form of the sc
functions in d51; Tu @26# solved numerically the mode
coupling equations by direct integration to determine the
per critical dimension of the KPZ; Mooreet al. @27# obtained
an explicit solution of the mode-coupling equations ford
.dc54 with z52. In their recent works, Colaiori an
Moore @28,29# studied the mode-coupling approximation f
02610
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the KPZ equation in the strong-coupling regime. They de
mined the upper critical dimension, dynamic exponents,
scaling functions by constructing an ansatz consistent w
the asymptotic forms of the correlation and response fu
tions @28#, and derived, by using a saddle point analysis
the mode-coupling equations, exact results for the correla
function in the long-time limit—a limit that is hard to stud
using simulations@29#. So far, all the analytical works in the
mode-coupling theory have been started by making an an
on the form of the scaling functions.

In the present work, we apply a self-consistent mod
coupling approach to the nonlocal KPZ equation@14# to in-
vestigate its dynamic scaling in the strong-coupling phase
our discussion, the scaling function assumptions propose
Ref. @28# are used. The corresponding values of the dyna
exponent that depend on nonlocal parameterr are calculated
numerically for the substrate dimensiond51, d52, andd
53, respectively.

The nonlocal KPZ equation proposed by Mukherji a
Bhattacharjee@14# is

]h~x,t !

]t
5n“2h~x,t !1h~x,t !1

1

2E dx8q~x8!“h~x

1x8,t !•“h~x2x8,t !, ~3!

where the kernel functionq(x) has a short-range~SR! part
;l0d(x) and a long-range~LR! part;lrxr2d. It was indi-
cated, by simple scaling analysis, that bothlr and l0 are
relevant ford,2 at the Gaussian fixed point and the critic
dimensions are given bydc5212r ~for r.0) anddc52
~for r,0) for any nonzerolr . Whenr.0, the local KPZ
theory is ‘‘unstable’’ under renormalization and a non-KP
behavior is expected. For 2,d,212r, only lr is relevant
at the Gaussian fixed point@14,15#. The lr vs l0 phase
diagram for the nonlocal KPZ equation is shown clearly
Ref. @14#. In the SR limit where the SR part of Eq.~3! domi-
nates the LR part (l05” 0 and ulr /l0u!1), Eq. ~3! can
smoothly go over to the local KPZ equation~1! in the case of
lr50. Our discussion in this paper will focus on the L
limit where the LR part of the nonlinear term in Eq.~3!
dominates the SR part (lr5” 0 and ul0 /lru!1), namely,
only consider the LR axial fixed points@14#. It should be a
noticeable question whether the following results do addr
the generalization of the single scaling regime of the o
dimensional KPZ equation, or there is a roughening tran
tion, and the listed values are supposed to be those for
true strong-coupling rough phase beyond a nonequilibri
roughening transition. Janssenet al. @11# have argued that the
mode-coupling approximation generically introduces s
tially long-range correlations and therefore only addres
the former.

In the Fourier space, Eq.~3! becomes

h~k,v!5G0~k,v!h~k,v!2
1

2
G0~k,v!E dV

~2p!

ddq

~2p!d
q~ uk

22qu…q•~kÀq!h~q,V!h~kÀq,v2V!, ~4!
5-2
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with G0(k,v)51/(nk22 iv) representing the bare respon
function. The correlationC(k,v) and response function
G(k,v) are defined by

C~k,v!5^h~k,v!h* ~k,v!&, ~5!

and

G~k,v!5d2d~k¿k8!d21~v1v8!K ]h~k,v!

]h~k8,v8!
L , ~6!

where ^* & denotes an average over noiseh(k,v). In the
spirit of mode-coupling approximation@18,22,24#, we derive
the following self-consistent coupled equations forG(k,v)
andC(k,v):

G21~k,v!5G0
21~k,v!1E dV

~2p!

ddq

~2p!d
q2~ uk

22qu…@q•~kÀq!#@q•k#G~kÀq,v

2V!C~q,V!, ~7!

C~k,v!5C0~k,v!1
1

2
uG~k,v!u2E dV

~2p!

ddq

~2p!d
q2~ uk

22qu…@q•~kÀq!#2C~kÀq,v2V!C~q,V!, ~8!

whereC0(k,v)52DuG(k,v)u2 is the bare correlation func
tion. In the SR limit,q(k)5l0, Eqs. ~7! and ~8! can be
reduced to the mode-coupling equations for the original K
equation@18,22–29#. In the strong-coupling limit, we look
for the scaling solutions

G~k,v!5k2zg~v/kz!, C~k,v!5k2Dn~v/kz!, ~9!

whereg(x) is a complex function andn(x) is a real function.
By substituting these scaling forms into Eqs.~7! and~8! and
keeping only the leading terms in the limitv,k→0 while
keepingv/kz finite, we find that the exponentsD andz have
to satisfy the following relation:

D1z541d22r. ~10!

As a result of the Galilean invariance of Eq.~3!, there is the
scaling exponent relation forx andz @14,15#,

x1z522r. ~11!

Therefore, from Eqs.~10! and ~11!, we obtain

D52x1d1z, ~12!

which, in fact, imply that the correlation function for th
nonlocal KPZ equation has also the standard dynamic s
ing form. In the LR limit, the scaling functionsg(x) and
n(x) satisfy the following equations:

g~x!2152 ix1I 1~x!, ~13!

n~x!5ug~x!u2I 2~x!, ~14!
02610
Z

l-

wherex5v/kz and I 1(x) and I 2(x) are given by

I 1~x!5PE
0

p

du sind22uE
0

`

dqq2z2312r~cos2u

2q cosu!r r
22rr 2zE dygS x2qzy

r z D n~y!,

~15!

I 2~x!5
P

2E0

p

du sind22uE
0

`

dqq2z2312r~cosu

2q!2r r
22rr 2(2x1d1z)E dynS x2qzy

r z D n~y!,

~16!

with P5lr
2Sd21 /(2p)d11, Sd is the surface area of th

d-dimensional unit sphere,r 25q222q cosu11, and r r
2

54q224q cosu11. The dynamic exponentz5z(d,r) can
be obtained by requiring consistency of Eqs.~13! and~14! on
matching both sides at an arbitrarily chosen value ofx. In
doing this, it is usual to make assumptions about the form
the scaling functionsg(x) andn(x). Because of the nonlo
cality of Eqs.~13! and~14!, the matching condition depend
on the forms of the functionsg(x) andn(x) for all x, so the
assumptions need to be reliable for allx @28#. Before Colaiori
and Moore’s work@28#, some assumptions had been pr
posed@18,25#. However, they all do not have the right larg
x asymptotic form@26#. In the case ofx→`, the integrals
I 1(x) and I 2(x) are controlled by regions whereq;x1/z, so
by simple power counting, we can obtain the following lar
x asymptotic behaviors forg(x) andn(x):

n~x!;x212b/z, gR~x!5Re@g~x!#;x2122/z,

gI~x!5Im@g~x!#;x21, ~17!

with b541d22z22r.
It is convenient to discuss in Fourier space, in which E

~13! and ~14! can be written as@28#

ĝR

ugu2
~p!5 Î 1~p!, ~18!

n̂R

ugu2
~p!5 Î 2~p!, ~19!

whereÎ 1(p) is the Fourier transform of the real part ofI 1(x)
and Î 2(p) is the Fourier transform ofI 2(x). They are ex-
pressed by

Î 1~p!52pPE
0

p

du sind22uE
0

`

dqq2z2312r~cos2u

2q cosu!r r
22rĝR~prz!n̂~pqz!, ~20!
5-3
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Î 2~p!5pPE
0

p

du sind22uE
0

`

dqq2z2312r~cosu

2q!2r r
22rr 2(2x1d)n̂~prz!n̂~pqz!. ~21!

Colaiori and Moore@28# proposed the scaling functio
assumptions forn̂ and ĝ,

ĝ~p!52Cu~p!exp~2uDpu2/z!, ~22!

n̂~p!5A exp~2uBpub/z!, ~23!

with D51 andC51/2, A andB are parameters dependin
on d, z, andlr . It can be found that inx space, for largex,
these assumptions give@28#

g~x!.const3x2122/z1 ix21, ~24!

n~x!.const3x212b/z. ~25!

So the assumptions in Eqs.~22! and ~23! have the right
asymptotic behaviors that are consistent with Eq.~17!. To
match the largex behaviors of Eqs.~18! and ~19!, we can
equivalently match them in the limitp→0, which actually
means matching the most divergent terms on both side
these two equations. In the largex limit, ug(x)u22.x2, so in
the smallp limit the left-hand sides in both Eqs.~18! and
~19! are dominated by the termsd2n̂/dp2 and d2ĝR /dp2

@28#. Accordingly, we have

~22z!/z25 lim
p→0

upu222/zÎ 1~p!, ~26!

ABb/zb~b2z!/z25 lim
p→0

upu22b/zÎ 2~p!. ~27!

By performing the integrals and taking the limitp→0 in
Eqs. ~26! and ~27!, we can obtain the following couple
equations:

PASd8

B
5

d~22z!

pz2

22r

BI~B,z,r!
, ~28!

PASd8

B2
5

b~b2z!

pz2

2(2z2b)/b12r

GS 2z2b

b D /b

, ~29!

whereSd85*0
pdu sind22u, G(u) is the Euler’s gamma func

tion, and I (B,z,r)5*0
`ds(12r22s2)s2z23 exp(2Bb/zsb

2s2). In the simplest scenario, the parameterB can be taken
to be @2(22z)#21 ~see Ref.@28# for details!. So the values
of the dynamic exponentz depending on the dimensiond and
nonlocal parameterr can be calculated by solving numer
cally Eqs.~28! and ~29!. We have calculated the values ofz
as a function of the parameterr in the case of dimensiond
51, 2, and 3. The calculated results are shown in Fig. 1.
the sake of comparison, the results obtained by the D
02610
of

or
G

FIG. 1. The values of the dynamic exponentz as the function of
nonlocal parameterr. ~a!, ~b!, and ~c! are for d51, 2, and 3,
respectively, in which the solid lines express the DRG results
the 2D2D2 lines express the mode-coupling~MC! results.
5-4
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SELF-CONSISTENT MODE-COUPLING APPROACH TO . . . PHYSICAL REVIEW E66, 026105 ~2002!
method in Ref.@14# are also shown in Fig. 1, where th
dynamic exponentz is expressed by

z521
~d2222r!~d2223r!

d~22r13!2629r
. ~30!

It can be seen that in the situation ofd51, although both the
DRG theory and the mode-coupling approximation give
exact valuez53/2 for r50, there exists a significant differ
ence between the two kinds of approaches. In the DGR
culation, there is a divergence aroundr520.4, while in the
mode-coupling approach, there seems to be no diverge
but only an inflexion aroundr50. In the case ofd52 and
3, the mode-coupling approximation in the present wo
gives the valuesz51.62 (d52) andz51.78 (d53) for r
50, which are identical to the results of Colaiori and Moo
@28# as we expected. In addition, the result ind52 is in good
agreement with the values obtained from numerical simu
tion and with the direct numerical solution of the mod
coupling equation@26#. Thus we can believe that the scalin
function assumptions made by Colaiori and Moore@28# are
reasonable and the mode-coupling approximation emplo
here should give satisfactory results in the strong-coup
regime. In our mode-coupling approximation, the anomal
values of z occur at r;0.3 for d52 and r;0.55 for d
53. One should see the analog of the lower critical dim
sion in these plots, namely, the criticalrc5211d/2; al-
though the singularities occur at a larger value ofr, the rc
seems to roughly correspond to the minima for the expon
z. It is not clear that there should not be a real divergenc
some value ofr, corresponding to the true divergence of t
fixed point in the standard KPZ problem in two dimension
Equation~30! addresses, on either side of the formal div
gence, respectively~a! the single scaling regime below th
,

a

. A
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critical dimension of the roughening transition~stable fixed
point! and ~b! the critical values at the transition~unstable
fixed point!. The divergent values ofz in the DRG calcula-
tion are thought to be an artifact of the one-loop approxim
tion @14#. The behavior ofz as a function ofr is poorly
understood, and it is not clear at all which part of the plott
curves should be believed or considered artifacts of
mode-coupling approximation. As a matter of fact, it is a
tually not obvious at all which scaling behavior is address
by the mode-coupling approximation. As mentioned abo
sincea priori no information is available about the size
the missing contributions, the mode-coupling theory con
tutes an uncontrolled approximation which, we think, ac
ally prevents us from giving more definite discussions on
results. Thus, further theoretical analyses of the mo
coupling approximation itself and the scaling function a
sumptions of Colaiori and Moore@28# will be very helpful
and valuable.

In summary, we have applied a self-consistent mo
coupling approach to the nonlocal KPZ equation to study
scaling behavior in the strong-coupling regime. The valu
of the dynamic exponentz, as a function of the nonloca
parameterr, are calculated numerically in the substrate
mensiond51, 2, and 3. In our calculation, the scaling fun
tion assumptions of Colaiori and Moore@28#, which have the
right asymptotic behaviors, are used. Our derivation sho
that the correlation and response function for the nonlo
KPZ equation also have the standard scaling forms exc
for different exponents.
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sions. This work was supported by grants from the Ho
Kong Research Grants Council~RGC! and the Hong Kong
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